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ABILITY OF SOLUTIONS OF CARBOXYLIC ACID SALTS IN THE QUASISOLID 

STATE TO LOWER THE HYDRODYNAMIC RESISTANCE OF WATER 

I. L. Povkh, A. I. Serdyuk, 
V. G. L'vov, and N. P. Kovalenko 

UDC 532.517.4:661.185 

At present the hydrodynamic resistance of a liquid is lowered by adding high-molecular- 
weight compounds and micelle-forming surface-active materials (SAM) [i]. 

We have investigated the physicochemical properties of solutions of salts of saturated 
carboxylic acids, and have determined parameters which we proposed to use to predict the 
ability of these salts to lower hydrodynamic resistance in the turbulent flow of a liquid. 
We investigated sodium and potassium salts of myristic, pentadecanoic, palmitic, and stearic 
acids, and soap chip (MRTU 18/233-68), which is a mixture of sodium salts of carboxylic acids. 

The activity coefficients of the counter ions and the viscosity of the SAM in question 
were measured. Their Krafft points and the effect of various additives on them were deter- 
mined. The temperature dependence of the magnitude of the decrease in hydrodynamic resistance 
was investigated. The decrease in friction losses for solutions of individual salts was ob- 
served in the 3-8~ range and near 30~ for a mixture (soap chip). 

The results obtained for the dependence of the activity coefficients of counter ions, 
viscosity, and solubilization power on temperature and the SAM concentration and the effect 
of lowering the hydrodynamic resistance lead to the assumption that there is present in solu- 
tions of salts of saturated carboxylic acids the so-called quasisolid state characterized by 

! 

the presence of nonspherical micelles and two Krafft points T k and T k correspondlng to the 
transition of the solution from the solid to the quasisolid state T k and then to llquld form. 
One of the distinguishing characteristics of a solution in the quasisolid state is its ability 
to lower the hydrodynamic resistance of a liquid within a definite temperature rang e. The 
upper limit of this temperature range is the T k of the given compounds or mixture of them. 

In view of this, we investigated the effect on the Krafft point of adding an electro- 
lyte (Na~C03) and propyl alcohol. The addition of the electrolyte increased Tk, while propyl 
alcohol decreased it (Fig. i). The additives investigated have a similar effect on the 
temperature range in which the hydrodynamic resistance is lowered. The addition of the 
electrolyte displaced this range toward higher temperatures and broadened it, while the 
addition of propanol displaced it toward lower temperatures and narrowed it. 

Thus, by using the literature values [2] of the Krafft points an SAM additive can be 
chosen to lower the hydrodynamic resistance and, within certain limits, to control the tem- 
perature range in which the lowering occurs. 
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Fig. i. Effect of concentration of i) so- 
dium carbonate C~, moles/liter, and 2) pro- 
panol C2, %, added to a solution of sodium 
myristate on the Krafft point and the size 
of the temperature range within which the 
hydrodynamic resistance is lower (shaded 
region). 
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EXPERIMENTAL STUDY OF HIGH-CONCENTRATION DISPERSED FLOWS IN A 

HORIZONTAL CHANNEL OF CIRCULAR CROSS SECTION 

B. I. Katorgin, L. E. Kostikov, 
V. A. Levchenko, V. V. Lozovetskii, 
and V. V. Perevezentsev 

UDC 536.244 

We have investigated the flow of a dispersed medium (air--boron carbide particles with 
an average diameter d s =4.85 ~m) for a volume concentration of the solid component between 
0.117 and 0.215, which corresponds to a change in the flow rate ratio (the ratio of the flow 
rates of the solid and gaseous components) from 228 to 479. It was shown that in the range 
of volume concentration investigated the main contribution to the hydraulic resistance in the 
stabilized portion comes from a quantity related to the interaction of the solid component 
with the channel wall. Using the conventional representation of the interaction of a dis- 
persed flow with a wall as a process of "dry" friction, the coefficient of friction of a dis- 
persed material can be introduced in a way analogous to that used in processing results for 
a single-phase fluid [I, 2]: 

P vol v~ 
2. 

where AP s is the pressure loss resulting from the motion of the solid component; Xfr, coef- 
ficient of friction of the dispersed flow; L and D, channel length and diameter, respectively ; 
Pvol = BPs, volume density of the stream; B, volume concentration of the solid component; Ps, 
density of the material of the solid component; v s = Gs/BPs F, velocity of the solid compo- 
nent; F, cross-sectional area of the channel; and Gs, mass flow rate of the solid component. 

Processing the experimental data by the method of least squares leads to the following 
dimensionless relation: 

X~ = 459Fr~ .79, (2)  

where Fr s = gds/V~ is the Froude number. The value of the Froude number varied from 1.9" 
10 -6 to 5.65-10 -6 . 

By using the longitudinal distribution of the volume concentration obtained by the cut- 
off method the longitudinal profile of the slip ratio (the ratio of the velocities of the 
components) was determined. The procedure is described and the results of an experimental 
determination of the critical flow velocity at which there is fallout of particles of the 
solid component in the lower part of the channel are presented~ For volume concentrations 
from 0.117 to 0.235 the critical flow velocity varied from 1.91 to 3.13 m/sec. 
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EVOLUTION OF A VORTEX IN A DILATANT FLUID 

L. K. Martinson UDC 532.516 

We consider the problem of the diffusion of a two-dimensional vortex in an incompres- 
sible non-Newtonian power-law fluid. We assume that at zero time a rotational motion develops 
in a dilatant fluid close to the origin of coordinates. Such a delta-function velocity dis- 
tribution corresponds to a finite total angular momentum of the fluid. 

The azimuthal velocity of the fluid in the evolution of such a two-dimensional vortex 
is found by solving the quasilinear parabolic equation 

r~t r ~ Or r2 -- (i) - - -  , o r  �9 ~ - - r H '  n >  1. 

The law o f  c o n s e r v a t i o n  o f  a n g u l a r  momentum r e q u i r e s  t h e  s o l u t i o n  o f  Eq. (1) a t  any i n s t a n t  
t o  s a t i s f y  t h e  i n t e g r a l  c o n d i t i o n  

i v ( r ,  1) r=dr  = 1 = const .  (2) 

The exact self-similar solution of problem (i), (2) is 

41r ~ , ! n 

o, ~ h , ,  
where 

42n~t  n - t  r t 2 
x - - - -  T t ;  T =  ; ~ = - - "  ~ - -  

2(~--a) 
2n 

(3) 

The solution (3) is finite at any instant in the spatial variable. Physically this means 
,that a shear perturbation is propagated in a dilatant fluid in the form of a shear wave whose 
front moves through the medium with a finite velocity. Therefore the perturbed region where 
v > 0 has a finite size at any instant. The velocity and tangential stresses are continuous 
at the wave front. 

The position of the wave front is determined from the condition $ = ~o. Analysis shows 
that the velocity of the wave front decreases with time, but the perturbation can penetrate 
indefinitely far into the medium. 

In the limit n + i, which corresponds to considering the diffusion of a vortex in a New- 
ionian fluid, the velocity of propagation of shear perturbations increases indefinitely. 
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MODEL OF JET FLOW OF A GAS IN A DEEP LAYER OF LIQUID 

V. I. Eliseev b~C 536.532.2 

The interaction of a liquid with a gas jet which discharges into it is one of the funda- 
mental links in a chain of processes which occur in chemical reactors, converters, and Martin 
furnaces. Among the large number of problems related to these processes a very important one 
is the study of the discharge of a gas jet vertically upward. As the simplest flow scheme 
we consider the jet flow of immiscible fluids. The solution is constructed by matching 
asymptotic expansions within the framework of the boundary layer model under the assumption 
that the boundaries of the jet are sharp smooth lines on which the conditions of continuity 
of velocities, temperatures, and tangential and thermal stresses must be satisfied. 

The solution leads to the following expressions for the half-thickness of a gas jet: 

�9 fl_.L.* = 1 + 1.72x -1/2  Re- l /2  ~1 !~ _+_ (1 - -  A) [$ + •  Re-I /2  (1.29 - -  6.20) ~s/~, (1 )  
ae 

where y, is the jet boundary and ao is the half width of the nozzle; 

(02 ) P~ o,g o~gao poUoao x 
A = - P o  - - 1  ; [ 3 = - - ~ ;  •  R e = - -  ; ~ -  P~ U2 Po Po ~to ao 

It is clear from (i) that with the approximations which were made in the calculations 
the jet boundaries diverge for sufficiently large velocities and converge with a decrease in 
gas velocity. This shows that for certain values of the velocity jet flow through the whole 
depth of the liquid becomes impossible. 

In this case it is necessary to consider another flow model, viz., bubbly flow. In this 
way the limit of applicability of the flow model considered was established. 

NOTATION 

T, temperature; p, density; P, pressure; ~, viscosity; U, velocity; x, longitudinal co- 
ordinate. Subscript 0 refers to gas parameters at nozzle exit, and 2 to liquid parameters. 
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LUBRICATION OF ELASTIC CYLINDERS 

M. A. Galakhov UDC 532.516.5 

In the problem of the rolling and sliding of elastic cylinders separated by a film of 
viscous fluid, the thickness of the film h(x) is given by the expression 

4 i h ( x ) = h ( c ) + f ( x ) - - f ( c ) +  ~ ~ [K(t, x)- -K(t ,  c)lp(t)dt, (1 )  
G 

where a and c are the boundaries of the film; p, pressure; E', reduced elastic modulus of 
the cylinders; K(t, x), Green's function for elastic displacements; and f(x). characterizes 
the shape of the cylinders. The elastic hydrodynamic problem was investigated for the con- 
tact of a rigid cylinder with an elastic layer of thickness l, and for an elastic cylinder of 
radius R between rigid plates. For a << ~ and a << R a Green's function is obtained for a 
half plane. If h(c) << R the decrease ~ in the diameter of a cylinder is given by the ex- 
pression 

6 = (4q/~E2)(In2Rb-l+ 0,18), 

where E~ is the reduced elastic modulus of the cylinder; q, load per unit length of the cylin- 
der; and b, Hertz half width of the contact region. For the average film thickness ho the for- 
mula 
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ho/R ::- 1.75 (}~oaU/R) 3/4 (po/E') -114 

holds, where ~o and ~ are, respectively, the viscosity and pressure coefficient of lubrica- 
tion, u is the velocity of rolling, and po is the Hertz pressure. 

Taking account of the effect of tangential stresses over the thickness of the film and 
the kinematics of the surfaces leads to the equations 

d dp]=.._d_d "~dt MN h "/P d t ;  lgp h , 
dx h3 exp ( - -Lp )  dx J dx 1 -- FV 2 t - -  x 2a ,, t -~ x dt  l - -  

- - c o  

c x 

i . t - x ~  ~ l-----V- ~ -TF dr' ( 2 )  
c 

dp (c) 
p (a) = p (c) - - O, 

dx 

[ i MN i" h dP dt l - - 2 V i N P ]  [ e x p [ L ( p - I ) ]  @ exp [L (p-- 1)1 rF ~ : d t  ~ = (3) 
h ~ t ~ x  2n t - - x  dt  1- -v  h ' 

where L = ap*, p* = 6~o(uI + u2)/2Rh(c)/h2(c); ul and u2,velocities of the surfaces; F = 
(2/~E'ho)~oexpL(ul + u2); V = (ua -- ul)/(u~ + u2); T, average value of the tangential stress 
over the thickness of the film relative to ~(p*)(u~.-- ul)/h(c); ~(p) = poexp(Lp); p, relative 
to p*; x, a, c, and t, relative to /2Rh(c); M = /2h(c)/R; and N =p~/E'. It is clear that 
problems (2) and (3) are separated for FV 2 << i. For a high velocity of rolling the tangen- 
tial stresses in (3) change the kinematics of the surfaces significantly. It follows from 
(2) that, forL ~ 5, h = i independently of the shape of the cylinders. Therefore, to lubri- 
cate heavily loaded bodies fluids with a strong dependence of viscosity on pressure are recom- 
mended. This property of a lubricant leads to a smoothing out of the irregularities in con- 

tact. 
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NUMERICAL CALCULATION OF UNSTEADY MOTION OF A LIQUID IN A CHANNEL 

I. Ya. Tokar' and M. M. Tumarkin UDC 621.822 

An algorithm is described for the numerical calculation of the dynamics of a liquid in a 
channel with a valve at the end by using the method of characteristics. The unsteady motion 
of a viscous slightly compressible liquid in a long channel is described by the dimensionless 

equations 

Op Ov Op Ou (i) 
_ Ox = ~ +,v+e, -- 0---~'- ~ ' 

where 
.g 

,f Ov 8v L e = ~  ~ W ( z - - ' r l )  d'ra; , = ~  ~ ; (2) 
0 

r 

F ~ ; P =  pCVo' v=--~o ; T = - - { - ;  x= s 
n=l 

To simplify the algorithm for the numerical solution of Eqs. (i) the integral (2) was 
approximated by a sum of exponential functions [i], and the approximation for ~T ~ i0 -~ was 
improved by increasing the number of exponential functions to five. The flow parameters at 
the end of the channel were calculated by solving simultaneously a finite-difference equation 
on a straight characteristic and the equation for the flow rate through the valve 
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P/= PJ-z-- v j +  vj_z(l--~Ax)- ~j_zAx; 

Vj = = F[~ -- Pc I sign (py -- Pc), (3) 

where the subscript j refers to values of the flow parameters at the end of the interval Ax, 
and j -- 1 to the beginning of the interval. It was established that system (3) does not have 
to be solved by an iterative method [2], but can be obtained in the explicit form: 

v j = 0 . 5 = ( - - = +  V=~+41~)sign~; p j = ~ - - v  1+pc' 

w h e r e  B = P j - 1  + v j _ l ( 1  --  ~Ax) --  a j _ l A x .  

The calculated frequency characteristics of a channel with a valve were confirmed by the 
experimental data in [3]. It was shown that for ~ ~ 0.001 channel friction can be neglected, 
a~d for large ~ the rearrangement of the velocity profile (2) has a definite effect on the 
dynamics. 

NOTATION 

X, axial coordinate; t, running time; V(X, t), axial velocity averaged over cross sec- 
tion; P(X, t), pressure in cross section of channel; r, L, radius and length of channel; ~, 0, 
kinematic viscosity and density of liquid; c, speed of sound in liquid; Zn, roots of second- 
order Bessel function of the first kind; Vo, arbitrary reference value of velocity; ~, di- 
mensionless conductance of valve; PC' dimensionless discharge pressure beyond valve. 
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NUMERICAL MODELING OF SOLUTIONS OF SOLIDIFICATION PROBLEMS 

L. A. Kozdoba and V. K. Mel'nik UDC 536.12:536.248.2 

~mathematical model of solidifcation (melting) problems is generally a mathematical 
model of a nonlinear unsteady heat-conducting problem with nonlinearities of the first, 
second, and third kinds, i.e., a general nonlinear problem [i]. In such problems a body 
generally passes through the whole range of temperatures from cryogenic to the melting point, 
and the thermophysical characteristics of the materials (nonlinearities of the first kind), 
heat fluxes at boundaries (nonlinearities of the second kind), and internal heat sources and 
sinks (nonlinearities of the third kind) vary appreciably with temperature [i]. In solidifi- 
cation problems heats of internal transformations L are liberated in a temperature range 
AT L = Tl -- T s # 0. In Stefan problems, which are a special case of solidification problems, 
it is assumed that L is not liberated in a two-phase zone ATL, but on a surface having a sin- 
gle (constant or variable) temperature T L (AT L = 0). In solving solidification problems by 
numerical methods using analog, digital, or hybrid computers, Stefan problems are solved as 
solidification problems; i.e., it is explicitly or implicitly assumed that L is liberated in 
a certain temperature range ATL # 0. The accuracy, time, and cost of solving Stefan problems 
by numerical methods as compared with analytic solutions depend strongly on that temperature 
range AT L # 0 which replaced the condition AT L = 0. 

An analysis is given of the numerical modeling of solutions of solidification problems 
by various methods [2-4] and also by modernized methods. This investigation enabled us to 
explain the effect of so'called methodological factors. Characteristics of modernizations 
performed consist in special methods for taking account of heats of internal transformations 
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L= . L~ in the temperature range ATL= ArLi , and in the use of "moving" modes (Rqv and Rqv 
l=1 i=1  

w i t h  RT). An a n a l y s i s  o f  t h e  e f f e c t  o f  t h e r m o p h y s i c a l  f a c t o r s  i s  g i v e n :  a) v a l u e s  of  L; 
b) ATL(AT L = O, AT L # O, ATL1 < ATL2 < ATLa);  c) X ( p a r t i a l  l i n e a r i z a t i o n ) ;  d) TL, T l ,  Ts ;  
and c o m p u t a t i o n a l  f a c t o r s :  a) t h e  s i z e  o f  t h e  s p a c e - n e t  (h) and t i m e  i n t e r v a l s  ( ~ ) ;  b) ~ and 
~ as functions of the position of the two-phase zone (reduction of h in the region of tile 
two-phase zone); c) schemes of arranging nodes and elementary volumes (~, T, F schemes); 
d) oscillations of solutions in stable difference schemes; e) range of "smearing out" L 
over ATL; f) schemes for taking account of nonlinearities (iterative, noniterative, mixed) 
etc. 

It is shown that numerical mddeling of solutions of solidification (melting) problems 
can be successfully performed with adequate accuracy on any types of computers (AVM, TsVM, 
GVM). It must be treated as a multifactor experiment on models having a physical nature dif- 
ferent from the thermal phenomenon being studied. The procedures for planning and carrying 
out these experiments must be similar to those employed in the study of large systems. 
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'REFINED NUMERICAL CALCULATION OF RERADIATION AND SCATTERING IN 

RADIATIVE HEAT-TRANSFER PROCESSES 

Yu. A. Zhuravlev UDC 536.3 

We consider problems of calculating resolving optical-geometrical radiation characteris L 
tics and monitoring the error of the relative values of the reradiated and scattered energy 
for both optically uniform and optically nonuniform volume and surface zones. On the basis 
of an analysis of the integral equations of radiative heat transfer written for the reradiated 
and scattered parts of the radiation in the reduced resolving radiation coefficients fij, an 
approximating system of linear algebraic equations was obtained ensuring the required accu- 
racy in determining the reradiated and scattered parts of the radiation. This is particu- 
larly important for radiating systems having a small number of zones and strongly reflecting 
surfaces and scattering components in the volume zones: 

�9 \ 
~l] = l ~ i j ' B J  ~-  / ~hl~ih]h] -4- , ~  ,t(t~ { , ~ - ~  )g ~igfgj 

p = l  h = l  k = I  g-=l 

w h e r e  (i, j=: 1, 2, . . .  , m~-n; FhQFp; VgcVk), 

B ]  :-- ff'J + ~j for / = 1 ,  2 . . . . .  m; 

Ay for j = m-4-1, m-i-2 . . . . .  re+n; 

and B are, respectively, the absorption and scattering coefficients of the medium, m-l; 
*ij, generalized angular coefficient of radiation from zone i to zone j; Fp, area of surface 
zone p, m2; V k, volume of volume zone k, m3; m and n, numbers of volume and surface zones in 
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the system; m' and n', numbers of domains of integration in the volume and surface zones, 
respectively; Rh, reflectivity of zone p in domain of integration h; Aj, absorptivity of sur- 
face zone j. 

A system of linear algebraic equations is presented enabling a direct calculation of the 
reradiation and scattering in multizone systems to be performed using triangular matrices. 
This greatly increases the possibilities of solving radiative heat-transfer problems on modern 
digital computers. Closure and reciprocity relations are presented. 

The proposed algorithm for refined calculations was tested, and the error in determining 
the reduced resolving angular radiation coefficients was estimated. 
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TEMPERATURE DISTRIBUTION IN A FINITE CYLINDER HEATED BY RADIATION PULSES 

Yu. M. Aivazyan, E. V. Lesnikov, 
S. S. Gromov, and L, V. Kazandzhyan 

UDC 536.24.02 

Knowledge of the temperature distribution in the receiving element of a pulsed electro- 
magnetic radiation heat detector makes it possible to determine its zonal characteristic re- 
sulting from the nonequivalent effects of radiation on various points of the surface of the 
receiving element. 

We have found the temperature distribution in a receiving element having the form of a 
finite isotropic cylinder for convective heat transfer at its boundaries by solving the heat- 
conduction equation in cylindrical coordinates (r, ~ , z) 

a~ [ O~T 1 aT 1 02T O~T ] OT 
Or ~ + r Or + r 2 O~ 2 + Oz ~ + q ( r ,  % z, l ) :  Ot (1 )  

with the boundary conditions 

OTo_~ r=a : hT ir=a; '~zOT z=• : "+ hT z=• ( 2 )  

Taking the Laplace transform of Eq. (i) with respect to time for zero initial conditions 
and the integral transform 

2~ b 

"~1,2-- 2aO T(r, % z, ~,) (s insz+cossz)  cosmq~ ) dzd% (3 )  
sin mqD 

0 --b 

where 

T(r,  % z, ~ ) =  iT ( r ,  % e, t)exp(--kt)dt 
0 

(4) 

and s satisfies the equation 

reduces (i) to the form 

2hs 
tg2sb--  h~__sZ , (5)  

0,2 ~ a~ ~ + ~ =  ~ "r~ ,2 = - ,~  ( 6 )  

By solving this equation and taking inverse transforms we find the following expression 
for the temperature in a finite cylinder: 
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i_ i 2 
T ( r ,  e~, z ,  l )  ~- 2~i h~a ~- - e~2a ~ - -  m ~- 

C--ioo " I1. 2 m  r~r~ 

- E l  E ' 1 2 =n q2 
"}- z h2a ~ q -  o~Za ~ - -  m e Z 

where a n are the roots of the equation 

^ 

Ira (~nr) q~ ] cosmq~ + 
k +':+ l 

~ exp (;kt)} - - ]  sin m~o J 2b (sin suz ~ cos suz) dk, 
: 

c d ~ ( a a ) + h t r a ( a a ) = O ,  m=0,  1, 2 . . . .  
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CALCULATION OF TEMPERATURE DISTRIBUTIONS IN HEAT-TRANSFER PROBLEMS 

I. N. Bogaenko and M. V. Boichuk UDC 536.24:681.3 

A method is presented for solving thermophysics problems 

/ 

cp ~o~ ~ = ~I -- vl (x, x) --Ore 
0 

i=I 

0 

T =o, (1) 

where the symbols haye the following meanings: c, specific heat; P, density; %, thermal con- 
ductivity; {vi(T , x}~., velocity field of moving substance; x, time variable; x =(xx, -.., 
'xj), spatial varlabl~7"q, strength of internal heat sources (sinks); ~o, initial temperature; 

m, temperature of medium; ~, inward normal to surface ~G; a, heat-transfer coefficient. 

The method consists in the reduction of boundary-value problem (i) to a system of Vol- 
terra integral equations of the second kind using the method of separation and based on the 
possibility of expanding an arbitrary function in a set of eigenfunctions of the Laplacian 
operator. The question of improving the convergence of the series describing the solution is 
examined. 

Calculations of temperature distributions in both classical and nonclassical model prob- 
lems are presented. 
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